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CSUC
Department of Physics
301A Mechanics
PORTFOLIO Problem 3b.) due:
—————————————————————————————————————————————————

I. APPROXIMATING THE AN-HARMONIC PENDULUM

Introduction: Somewhere early-on in your physics-life you learned that a “Simple Pendulum” executes
“Simple-Harmonic-Motion” and you understood very well that, as a consequence of merely being one of those
marvelous “S.H.O. appearances in natures”, the period of oscillation should be Amplitude Independent. Ah, but
you know it couldn’t be quite true! After all, everybody in Introductory Mechanics kept warning you to use small
amplitudes (!) ... just to keep it “accurate”. Well ... then ... so what is the truth ? Again, the full answer turns
out to be a pretty tough problem. Yes, but again, we don’t need the full answer ... a highly accurate approxima-
tion will do very nicely. This PORTFOLIO problem will lead you through two procedures to get the answers you need.

Let’s get started by just noting some simple observations.

a) First, this is a conservative problem which means we can just write down the conservation of energy equation:
(kinetic energy) + (potential energy) = constant ... and go from there.

b) The real difficulty was representing the potential energy. Yes, it’s m · g · h , but we need to use the angle of
swing, which we’ll call θ, as our descriptive variable. If the pendulum has length ` and we have a point-mass m
on the end, then the full true potential energy (taking zero at the bottom of the swing) is given by m ·g ·` (1− cos(θ) ).

c) If the angle involved is small (i.e. � 1), it makes great sense to express the cosine term as a power series in θ .

cos(θ) = 1 − θ2

2!
+

θ4

4!
... (1)

Remember, the angle is measured in radians so that θ really is a very small number compared to 1 for angles less
than, say, ten degrees (check this!). Then it makes sense to keep the first non-vanishing variable term and toss the
rest. But suppose we now make our starting angle “somewhat bigger” ... what correction do we introduce then?
Show yourself that the correction introduced by the next “quartic” term really is still smaller, but in an infinite series
with alternating terms we are guaranteed that adding the next tern does improve the approximation. This will be
our next correction. Here’s the trick. We are going to add in a term written as λ · θ4 . In our case we will, (at the
end of the problem, to be sure) actually set the value of λ as 1 / 4! . But, throughout the analysis, we will treat λ as
a variable and that allows us to do a (Taylor) expansion in the variable λ. This is a sweet trick. Use it early and often.

d) Once we are convinced that an added effect is “small”, we can include this small intrusion on our basic problem
as a perturbation to be included in some consistent order. The added math is generally far simpler (and much more
enlightening) than the formal solution itself. You will do this two different ways ! That they agree precisely (after
what seems like a world of algebra ...) is a delicious confirmation that the level of truthful certainty inherent in modern
mathematical rigor does, indeed, tie everything together “behind the scenes”. We put up with the pedantic (and not
a little daunting ...) nature of abstract mathematical proof precisely because of the great power of this certainty.

1. Method # 1. Energy. Of course, ... we start by using Natural Units.

We raise the mass m up to its starting angle θmax and then release it from rest as a pendulum. This problem
has only four natural sizes: {g, `, m, θmax}. As in so many gravitational problems the mass drops out leaving
only the length `, the starting angle and the acceleration of gravity as natural and “characteristic” sizes in the problem.

Question Set 1.) Use ` as your unit of length L i.e. ` = 1 · L and g as your unit of acceleration i.e. g = 1 · L/T 2.

First find the unit of time T and the unit of velocity L/T . Next, write down the Active conservation of energy
equation in these units. Notice how constants seemingly disappear in Active equations. It will have the form:



2

1

2

(
θ̇
)2

= Umax − U (2)

You will, of course, substitute in the specific “quartic” model we are now using for the potential energy. Now separate
the variables θ and t as we always do, to arrive at:

d θ√
Umax − U

= ±
√

2 dt (3)

Inside the radical is the variable λ ! You are to perform a Taylor expansion in λ up to first order which leaves
you with a simplified equation which you must now integrate as the “Second Newtonian Integral”. You will actually
see a pair of integrals to do (i.e. the “zeroth” and “first order” terms). Don’t freak out here! These integrals
are actually very do-able (oh yes they are ...) ! The first use of these integrated expressions is simple. If the angle
proceeds in time from its initial value of θmax down to zero (i.e. the bottom), then the time expended is T 1 /4,
i.e. one-quarter of the full period of motion. Perform the integration over this full interval and you have the first
relation we seek! It tells you ( correct to first order in λ) how the period has changed by including the (true)
quartic potential energy. Write down this result and savor it! It is what you have been “missing” your whole (young)
physics-life. Evaluate to what percentage the period changes if the starting angle is even as large as θmax = π/2.
Could you notice this in the laboratory ? The final problem staring at you now is that your result from doing the
integrals to an arbitrary intermediate angle will give you the full answer to the “motion” relationship in the form
of “time” as a function of “angle”. You will now need to invert this to give us “angle” as a function of “time”. This
is to say, the integrals explicitly give us our true relationship in the form t = t̃ (θ) ... and we wish to have it in the

form θ = θ̃ (t). Remember, you need only perform this inversion correct to first order in λ ! The best way to do
this is to use “implicit differentiation” on the relationship in front of you (recall, we did this earlier in the semester).
You will be able to extract the quantity: ∂ θ(t, λ)/∂λ|λ=0 which will allow you to write explicitely:

θ(t, λ) ≈ θo(t) + λ1 · ∂ θ(t, λ)/∂λ |λ=0 + higher power terms (4)

So now you know how the angle depends on time for every angle. Once again, the bottom of the swing is one quarter
of the full periodic cycle and the angle is zero there. So now you know it must be the case that:

0 = θo(T1/4) + λ1 · ∂ θ(T1/4, λ)/∂λ |λ=0 (5)

From this you may, yup ... once again, find T1/4 and once again you need only do it correct to first order in λ ! The
answer will agree (it must agree! ... this is mathematics ...) with the first result you just derived. I think you can
see that we have used this theme of “power series expansion” repeatedly in this problem. It is very (very !) powerful
and will be one of your first “go to” tools throughout your physics life and beyond.
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2. Method # 2. Newton. Of course, ... we start by using Natural Units ... again!

This problem also allows a solution proceeding directly from Newton’s second law. The solution process really
“feels” different and the equations themselves really do “look” different. But mathematics is obdurate. It cannot be
bent. It links everything “ behind the scenes” ... and the answers come out the same. By the way, this might help
convince you that, with mathematics at our side, we are never really “out of ammunition”. The number of approaches
is beyond counting ... so we have merely to be more imaginative! Truth will out ... and we can find it!

Question Set 2.) Write down the conservation of energy equation in its Active form from above (including the

quartic term, of course). Now take the total time derivative of this whole equation and, once you have canceled off

the common overall factor of θ̇ which appears, you will have the Newton Second Law form of the equations of motion
for this problem in our chosen coordinates. It will look like:

θ̈ = − θ + λ · θ3 (6)

Our expansion parameter λ has a slightly different “value” this time ... but plays exactly the same role as before.
We wish to express its effect on the problem in a Taylor’s series. To do this we write the full solution θ(t, λ) as a
power series as follows:

θ(t, λ) ≈ θo(t) + λ1 · θ1(t) + higher power terms (7)

Now we insert this in Newton’s Second Law (equation (6) just above) on both sides of the equal sign. The
theorem on the uniqueness of power series now allows us to equate individual terms of equal powers in λ but on
opposite sides of the equal sign, one by one. This gives us, then, a whole sequence of individual equations ... one
for each power. We observe that each succeeding equation depends on the solution of the preceding equation. These
equations “fold” on each other. This is something new and subtle. Wow.

We achieve first, then, for the “zeroth power” term:

θ̈o(t) = − θo(t) (8)

This is the zeroth order equation and describes a Simple Harmonic Oscillator as expected. But the new “first order”
equation that follows is:

θ̈1(t) = − θ1(t) + λ · θo(t)3 (9)

This is also a S.H.O. situation but with a novel “Inhomogeneity” on the right hand side involving θo(t) . This is
where the magic is. These equations also have initial conditions. Since we assume θ(t, λ) starts from rest at angle

θmax, We can satisfy these conditions to all orders by specifying that: θo(t = 0) = θmax and θ̇o(t = 0) = 0 for the

zeroth order function, and then θ1(t = 0) = 0 and θ̇1(t = 0) = 0 for the first order function.

Solving equation (8) is something you know how to do. All the new content we wish to examine is found in
equation (9) ! What you need to recognize is that this is something you have seen before! It appeared before your
eyes when we studied the “causal response” of Simple Harmonic Oscillators to a driving force that gets “turned on”
at some particular moment. One of the key mantras of physics is that “the same equations have the same
solutions”. You are to write down the solution to equation (8), and then stick that into our previously discovered
solution to equation (9) (... and for which you just might have to look back in your notes and find!) .

This result brings us back to the setting of Question Set 1.) . From the solutions to equations {8 & 9} you are
to write down the “first order corrected” equation for the motion and the period. They must ! , of course, agree with
our earlier results.


